# Accessibility of mathematics content

#### Emma Cliffe

University of Bath

Emma Cliffe Accessibility of mathematics content

・ロト ・四ト ・モト ・モト

э

#### 1 Access to learning resources

- Lectures and note taking
- Reading and doing mathematics

## 2 Examples

- Large print mathematics
- Mathematics in Braille and voice
- Accessing print mathematics



< A >

#### Access to learning resources

- Lectures and note taking
- Reading and doing mathematics

### 2 Examples

- Large print mathematics
- Mathematics in Braille and voice
- Accessing print mathematics
- 3 The technology gap

<ロト < 同ト < 三ト

- A 🗐 🕨

Lectures and note taking Reading and doing mathematics

## Access to learning resources

To access learning resources a student might require

• Reasonable adjustments made by the institution

#### together with

- Assistive technology
- Human support

Lectures and note taking Reading and doing mathematics

## Lectures and note taking

Mathematics can be specially difficult in lectures...

э

Lectures and note taking Reading and doing mathematics

## Lectures and note taking

Mathematics can be specially difficult in lectures...

Provide electronic notes prior to lectures:

Without the lecture notes there is no point in being there...

< ロ > < 同 > < 三 > < 三 > 、

Lectures and note taking Reading and doing mathematics

# Lectures and note taking

Mathematics can be specially difficult in lectures...

Provide electronic notes prior to lectures:

Without the lecture notes there is no point in being there...

In a format which can be made accessible!

I thought a PDF would be accessible since it is an electronic format...

Lectures and note taking Reading and doing mathematics

# Reading and doing mathematics

Short term: a *mathematically fluent* reader who can voice mathematics without ambiguity

イロト イポト イヨト イヨト

# Reading and doing mathematics

Short term: a *mathematically fluent* reader who can voice mathematics without ambiguity

For independent study we might want to produce:

- Flexible visual electronic format
- Audio with or without synchronised highlighting
- Braille

イロト イポト イヨト イヨト

# Reading and doing mathematics

Short term: a *mathematically fluent* reader who can voice mathematics without ambiguity

For independent study we might want to produce:

- Flexible visual electronic format
- Audio with or without synchronised highlighting
- Braille

Does MSOR software work with assistive technology? What about the technicalities of *doing* mathematics without pen and paper?

#### Access to learning resources

- Lectures and note taking
- Reading and doing mathematics

## 2 Examples

- Large print mathematics
- Mathematics in Braille and voice
- Accessing print mathematics

#### 3 The technology gap

< □ > < 同 > < 回 >

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

## Large print mathematics

Large print doesn't just mean large...

イロン イロン イヨン イヨン

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

## Large print mathematics

Large print doesn't just mean large...

• RNIB clear print guidelines

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# Large print mathematics

Large print doesn't just mean large...

- RNIB clear print guidelines
- For mathematics?

(a)

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# Large print mathematics

Large print doesn't just mean large...

- RNIB clear print guidelines
- For mathematics?
- Using LATEX or Word:
  - Producing required formats in print is challenging!
  - 2 Re-flow problem
  - OF an inflexible format
  - Neither format works well with some assistive technology

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

## 11pt



э

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

## 14pt

| <b>Example 1.</b><br>Find the quadratic mean of $1, 2, 3, 4, 5, 6, 7, 8, 9, 10$ : |   |                                                              |
|-----------------------------------------------------------------------------------|---|--------------------------------------------------------------|
| $\sqrt{\frac{1}{10}\sum_{i=1}^{10}i^2}$                                           | = | $\sqrt{\frac{1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+9^2+10^2}{10}}$ |
|                                                                                   | = | $\sqrt{\frac{1+4+9+16+25+36+49+64+81+100}{10}}$              |
|                                                                                   | = | $\sqrt{\frac{385}{10}}$                                      |

Emma Cliffe Accessibility of mathematics content

æ

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

## 17pt



Large print mathematics Mathematics in Braille and voice Accessing print mathematics

## 20pt...



Large print mathematics Mathematics in Braille and voice Accessing print mathematics

## 20pt?



Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# A more flexible format?

- Use MathType to create Word documents?
  - Equations can be read on screen
  - But re-flow still a problem when printing...
  - Still won't work directly with assistive technology
  - But we can convert to other formats
- Convert LATEX to MathML?

(a)

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# Mathematics in Braille and voice

Screen reading software sometimes doesn't work:

• Example: JAWS reading a PDF

イロト イポト イヨト イヨト

Access to learning resources Larg Examples Mat The technology gap Acc

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# Mathematics in Braille and voice

Screen reading software sometimes doesn't work:

#### • Example: JAWS reading a PDF

Access to the LATEX source is required:

- Just Braille? See MSOR LETEX and Braille project
- Some people choose to read LATEX source directly:
  - Complex mathematics difficult to navigate
  - Ommands for presentation mixed with content

< ロ > < 同 > < 回 > < 回 > .

Access to learning resources Examples The technology gap Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# Cleaning up LATEX sources

\noindent {\bf 5.}\quad {\bf \$\Theta\$-notation (reminder)}
\medskip

```
\noindent {\bf Definition} ($\Theta$-notation).
 \int (g(n) \\ ) = \\ f(n):  there exist constants
c_1>0, c_2>0, n_0>0 such that c_1 g(n) \leq c_2 g(n)
for all n \le n_0 .
\medskip
\noindent {\bf Convention.}\quad If $f(n) \in \Theta \bigl( g(n) \bigr)$,
then we write: f(n) = \frac{bigl(g(n) \setminus bigr)}{s}
\medskip
then g(n) =  Theta bigl(f(n) \bigr).
\medskip
\noindent {\bf Proof.}\quad The inequality
s(n) \leq c_1 g(n) \leq f(n) \leq c_2 g(n)
for n \le n_0 \ implies
s(1/c_2) f(n) \leq g(n) \leq (1/c_1)f(n)
```

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# Cleaning up LATEX sources

5. \Theta-notation (reminder)

```
Definition (\Theta-notation).
 \Theta (g(n)) = \{ f(n) : there exist constants c_1>0, c_2>0, n_0>0 \}
such that c_1 g(n) \leq f(n) \leq c_2 g(n)
for all n \ge n 0 \setminus.
Convention. If f(n) \setminus in \setminus Theta (g(n)),
then we write: f(n) = \langle Theta (g(n)) \rangle.
Lemma. If f(n) = \langle Theta (g(n)) \rangle.
then g(n) = \Theta (f(n)).
Proof. The inequality
0 \le c_1 g(n) \le f(n) \le c_2 g(n)
for n \ge n 0 implies
0 \le (1/c_2) f(n) \le g(n) \le (1/c_1)f(n).
```

イロト 不得 トイヨト イヨト 二日

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# Moving to MathML?

#### We can convert mathematics in $\[Mathematics]$ or Word to MathML:

• HTML + MathML read using IE and MathPlayer

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# Moving to MathML?

We can convert mathematics in  $\[mathbb{E}T_EX\]$  or Word to MathML:

• HTML + MathML read using IE and MathPlayer

But

- Complex mathematics is difficult to navigate
- Description of notation rather than name of the object
- There is no Braille support

(日) (同) (三) (三)

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# Accessing print mathematics

- Text PDF: theoretically accessible but most aren't
- Image PDF: inaccessible
- Print hard copy is scanned to produce images
- Mathematics on the web might exist only as images

(a)

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# Accessing print mathematics

- Text PDF: theoretically accessible but most aren't
- Image PDF: inaccessible
- Print hard copy is scanned to produce images
- Mathematics on the web might exist only as images

Images 
$$\xrightarrow{\text{OCR}}$$
 Text which might contain errors

(a)

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

## Optical character recognition

# For instance, suppose we need to recall that $(x+a)^n = \sum_{k=1}^n C_k^n x^k a^{n-k}$ where $C_k^n = \frac{n!}{(n-k)!k!}$

Emma Cliffe Accessibility of mathematics content

イロト イポト イヨト イヨト

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# Optical character recognition

 Standard OCR: For instance, suppose we need to recall that k=0 where /-yn kn-k (n-k)\k\

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# Optical character recognition

• Standard OCR:

For instance, suppose we need to recall that k=0

- where
- /-yn
- kn-k
- $(n-k) \setminus k \setminus$
- Example: InftyReader and ChattyInfty

Large print mathematics Mathematics in Braille and voice Accessing print mathematics

# Optical character recognition

• Standard OCR:

For instance, suppose we need to recall that k=0

where

- /-yn
- kn-k

 $(n-k) \setminus k \setminus$ 

#### • Example: InftyReader and ChattyInfty

For mathematics this would be the OCR of choice — to stick in a piece of paper that you didn't know the context of... knowing that InftyReader is powerful — this is the most powerful thing that I have.

< ロ > < 同 > < 回 > < 回 > .

#### Access to learning resources

- Lectures and note taking
- Reading and doing mathematics

#### 2 Examples

- Large print mathematics
- Mathematics in Braille and voice
- Accessing print mathematics

#### The technology gap

< 6 >

# The technology gap

The production of accessible mathematical resources is difficult

#### and

There is a lack of effective assistive technology available to students:

- Typically recommended technology provides limited access to mathematics
- Slow impact of research and development

< ロ > < 同 > < 三 > < 三 > 、