Skip to content

Toggle service links

Conceptual Situation Spaces for Situation-Driven Processes
Dr. Stefan Dietze Research Fellow

This event took place on 21st May 2008 at 11:30am (10:30 GMT)
Knowledge Media Institute, Berrill Building, The Open University, Milton Keynes, United Kingdom, MK7 6AA

Context-awareness is a highly desired feature across several application domains. Semantic Web Services (SWS) technologies address context-adaptation by enabling the automatic discovery of distributed Web services for a given task based on comprehensive semantic representations. Whereas SWS technology supports the allocation of resources based on semantics, it does not entail the discovery of appropriate SWS representations for a given situation. Describing the complex notion of a situation in all its facets through symbolic SWS representation facilities is a costly task which may never lead to semantic completeness and introduces ambiguity issues. Moreover, even though not any real-world situation completely equals another, it has to be matched to a finite set of parameter descriptions within SWS representations to enable context-adaptability. To overcome these issues, we propose Conceptual Situation Spaces (CSS) to facilitate the description of situation characteristics as members in geometrical vector spaces following the idea of Conceptual Spaces. CSS enable fuzzy similarity-based matchmaking between real-world situation characteristics and predefined situation descriptions. Following our vision, the latter are part of semantic Situation-Driven Process (SDP) descriptions, which define a composition of SWS Goals suitable to support the course of an evolving situation. Particularly, we refer to the WSMO approach for SWS. Consequently, our approach extends the expressiveness of WSMO by enabling the automatic discovery, composition and execution of achievable goals for a given situation. To prove the feasibility, we provide a proof-of-concept prototype.

The webcast was open to 100 users

Click below to play the event (46 minutes)

Creative Commons Licence KMi logo