
Approximation
for the Semantic Web

The KnowledgeWeb point of view

Holger Wache
Vrije Universiteit Amsterdam

KMI Podium,
Milton Keynes, May 5th 2006

2

ReasoningDL-
Reasoning

Ontology

Semantic Web Systems in General

Input Output

3

DL-
Reasoning

Problems tackled in KWEB

Input Output

t

Toy
Examples

Real
World

Scalability
(Performance)
– DL-Reasoning in

EXPTIME (OWL DL
in NEXPTIME)

Ontology

4

AnswersQuery

Reasoning
Method

Knowledge
Base

DL-
Reasoning

Ontology

Problems tackled in KWEB

Robustness
– For example during

query answering
Possible
Answers

Input Output

5

DL-
Reasoning

Ontology

Input Output
DL-

Reasoning

Ontology

Input Output

Approximation Approaches

Language
Weakening
Language
Weakening

Approximate
Deduction
Approximate
Deduction

Knowledge
Compilation
Knowledge
Compilation++

6

Query

Approximate Deduction
through Simplification

Simplify query
Simple query ⇒
fast query answering
Simple query ⇒
approximated answers
Continuously complete
query

Anytime behavior
t

Simplified Query

R
ea

so
ne

r
Quality

7

How to simplify?

Query = … u Φ u … u (…t Ψ t …)

First Idea:
Omit some parts (e.g. Φ, Ψ)
First Idea:
Omit some parts (e.g. Φ, Ψ)

QI ⊆ QI

QI ⊆ QI

QI QI

8

Query = … u Φ u … u (…t Ψ t …)

How to simplify? (II)

Second Idea:
Rewrite some parts (e.g. Φ, Ψ)
Second Idea:
Rewrite some parts (e.g. Φ, Ψ) QI ⊆QI

>

QI ⊆ QI

>

QI ⊆ QI

9

Cadoli-Schaerf-
Approximation for DLs

Replacing some sub terms in concept
expressions
Well-founded theory with (theoretically)
nice results

10

S0

S1

Cadoli-Schaerf-
Approximation: Example

S2

Depth: 0 Depth: 1Depth: 2

Depth of subconcept D:
number of universal quantifiers that have D in its scope.
Depth of subconcept D:
number of universal quantifiers that have D in its scope.

11

Application: Classification

Central process
Classify Term Q
Contained in
– Generating the

subsumption
hierarchy

– Instance Retrieval
Q

12

Mixed Results:
Classifying in TAMBIS

Application: Classification of Concepts
⇒ sequence of subsumption test: C v D

8 181157 32

≈24 ≈0≈0 ≈279

157 32
8 149

13

Further Results

14

Query = … u Φ u … u (…t Ψ t …)>

Problem: Term Collapsing

Term D
– Very often also

conjunction of subterms

> >

Term C
– very often

conjunction of
subterms

– e.g. conjunctive
queries

>

Subsumption Queries
have this structure

very often

15

Classifying in TAMBIS (IV)

65 = 35,9%157 = 100% 190 = 62,1%Term Collapsing:

16

Lessons learned

Avoid Term Collapsing
– Replace ψ with something else than > or ⊥

Find better places to rewrite
– Ontology-adapted φ?

17

Focused Case: Instance Retrieval

Find all instances a which belongs to a query Q:
a:Q
Tool InstanceStore:
– Try to replace DL reasoning as much as possible with

(scalable) DB retrieval
– Only applyable to role-free A-Boxes

a:Q ↔ Ia v Q; Ia concept description of instance a
Boolean Conjunctive Queries
– q1∧L∧ qn, where q1,L,qn are of the form x:C or
hx,yi:R

– Restrict to those which can be converted to a concept
expression C

18

New Approximation Method:
Heuristic Ordering of Conjuncts

Compute a ranking value
for each conjunct

Order the conjuncts q1,L,qn
according to their value
Complete approximated
query with more and more
expensive conjuncts

R
ea

so
ne

r

Φ(q1)

qn qiq1

Φ(qi) Φ(qn)

Φ(q1) Φ(qi)Φ(qn) < <

Query

qnqiq1 ∧ ∧ ∧ ∧.. ..

∧ ∧.. ∧

19

How to order conjuncts?

According to the needed computation time
for each conjunction
– Estimate the computation time a priori

According to the possible search space
reduction
– Prefer conjuncts which eliminate a lot of

instances

20

How to estimate the
computation costs?

21

Effects of Cadoli-Schaerf for
Subsumption

C v D
Semantics

(C v D)⊥
“a⊥“

C v D ↔ ² C u ¬D

22

Effects of Cadoli-Schaerf for
Subsumption

C v D
Semantics

(C v D)⊥
“a⊥“

(C v D)⊥ ↔ ² (C u ¬D)⊥
C⊥ D⊥¬D⊥

23

C v D

(C v D)⊥

Effects of CS for Subsumption:
Term Collapsing

Semantics

“a⊥“

Term collapsing

24

Effects of new Approximation

Semantics

not changed;
Term collapsing avoided

C v D

(C v D)∆(Ia v Q)∆

(Ia v Q)

only Q changed

25

Results: Subsumption tests
More Levels

26

Results: Time

27

DL-
Reasoning

Ontology

Input Output
DL-

Reasoning

Ontology

Input Output

Approximation Approaches

Language
Weakening
Language
Weakening

Approximate
Deduction
Approximate
Deduction

Knowledge
Compilation
Knowledge
Compilation++

28

Approximation through
Language Weakening

Input OutputReasoning
Method

Knowledge
Base

DL-
Reasoning

Ontology

OWL-FULL

OWL-DLP

A-Box

Role-
free

DataBase
Queries

T-Box

DLP-
Reasoning

29

DL-
Reasoning

Ontology

Input Output
DL-

Reasoning

Ontology

Input Output

Approximation Approaches

Language
Weakening
Language
Weakening

Approximate
Deduction
Approximate
Deduction

Knowledge
Compilation
Knowledge
Compilation++

30

Ontology

OutputReasoning
Method

Approximation through
Knowledge Compilation

Input

Ontology
(optimized)

Reasoning
(optimized)

31

Standard: KAON2

OWL DL TBox
(no nominals)

Translation to
Disjunctive Datalog
[ExpTime]

Query SWRL Rules
(only DL-safe)

Disjunctive Datalog Reasoning Engine [coNP]

OWL DL ABox

Answer

suffices for
some queries
e.g. instance
retrieval for
named classes

32

(Approximated: KAON2) = Screech

OWL DL TBox
(no nominals)

Translation to
Disjunctive Datalog
[ExpTime]

Query SWRL Rules
(only DL-safe)

Disjunctive Datalog Reasoning Engine [coNP]

OWL DL ABox

Answer

suffices for
some queries
e.g. instance
retrieval for
named classes

OWL DL TBox

language weakening

split program

[P]

Can be performed
offline.

33

Screech simple example

serbian t croatian v european
eucitizen v european
german t french t beneluxian v eucitizen
beneluxian ≡ luxembourgian t dutch t belgian

serbian(ljiljana). serbian(nenad). german(pascal).
french(julien). croatian(boris). german(markus).
german(stephan). croatian(denny). indian(sudhir).
belgian(saartje). german(rudi). german(york).

34

Screech simple example
beneluxian ≡ luxembourgian t dutch t belgian

KAON2 translates into the following four clauses:

luxembourgian(x) ∨ dutch(x) ∨ belgian(x) ← beneluxian(x)
beneluxian(x) ← luxemburgian(x)
beneluxian(x) ← dutch(x)
beneluxian(x) ← belgian(x)

Screech split first clause:

luxembourgian(x) ← beneluxian(x)
dutch(x) ← beneluxian(x)
belgian(x) ← beneluxian(x)

` luxembourgian(saartje)
` dutch(saartje)
` belgian(saartje)

` luxembourgian(saartje)
` dutch(saartje)
` belgian(saartje)

35

Screech reasoning

data complexity is P

complete
but unsound

inference can be described in terms of
standard notions from non-monotonic
reasoning

36

Screech Performance
(not optimized yet)

Galen ontology
– 673 axioms, 175 classes
– randomly populated with 500 individuals

After KAON2: 267 disjunctions in 133 rules eliminated

Complete run:
– queried for the extensions of all 175 Galen classes
– resulting in 5809 classifications (Screech)

• 5353 (i.e. 92.2%) correct
– For 138 out of 175 classes: computed extension correct
– Average time saved: 39.0%

37

Summary
Approximation approaches start to improve
performance
– Cadoli-Schaerf Approximation seems to not to work in

practical settings
– Heuristic approximation but performance improvements

(only) in restricted cases?!
– Screech 40% speed-up with only 8% wrong answers

but only in one use-case
Open questions:
– Try to understand (theoretically) why they work
– Benchmarking (more use-cases)
– What about Robustness?

Thank you for your attention!

