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Spatial expressions are referential

◮ How near is near? How fast is fast?

◮ We need to evaluate the size of the scene, the perspective at
which it is viewed, typical behaviour and properties of objects,
and the configuration of other objects (Herskovits, 1986).
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Physical world vs. natural language

◮ Physical world can be evaluated using continuous measures:
co-ordinate system with the scale of real numbers.

◮ Natural language descriptions use discrete reference to refer to
events and objects: near, back, left, slowly, moderately and
fast.

◮ Non-linguistic reference is made with high degree of accuracy
while spatial expressions are ambiguous and vague.
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Aims

The aims of the research are:

◮ to learn the meanings of spatial expressions automatically,

◮ to be able to demonstrate that the system is able to use them
in a way that is natural to a human observer,

◮ to integrate the natural language system with the one that is
used to drive a mobile robot.
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Why mobile robotics?

◮ We get a wealth of information through the robot’s sensors
(but this information is very low-level). What would be a
better way to learn referential expressions?
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Why mobile robotics?

◮ We get a wealth of information through the robot’s sensors
(but this information is very low-level). What would be a
better way to learn referential expressions?

◮ A robot that can be interacted with in natural language is of
great practical utility: interaction with robots in hazardous
environments, assistive aids for visually impaired, generating
descriptions for virtual environments (computer games), etc.
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Why mobile robotics?

◮ We get a wealth of information through the robot’s sensors
(but this information is very low-level). What would be a
better way to learn referential expressions?

◮ A robot that can be interacted with in natural language is of
great practical utility: interaction with robots in hazardous
environments, assistive aids for visually impaired, generating
descriptions for virtual environments (computer games), etc.

◮ Explore the interaction with the area of mobile robotics that
deals with localisation and mapping (SLAM) (Newman, 2001).
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Symbolic vs. non-symbolic

◮ Symbolic approaches (Herskovits, 1986; Di Tomaso and
Lombardo, 1998) attempt to design rules that encode domain
specific knowledge manually.
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Symbolic vs. non-symbolic

◮ Symbolic approaches (Herskovits, 1986; Di Tomaso and
Lombardo, 1998) attempt to design rules that encode domain
specific knowledge manually.

◮ Non-symbolic techniques (Gapp, 1994; Regier and Carlson,
2001) identify abstract parameters that model some properties
of physical environment and train their values using machine
learning.
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Symbolic vs. non-symbolic

◮ Symbolic approaches (Herskovits, 1986; Di Tomaso and
Lombardo, 1998) attempt to design rules that encode domain
specific knowledge manually.

◮ Non-symbolic techniques (Gapp, 1994; Regier and Carlson,
2001) identify abstract parameters that model some properties
of physical environment and train their values using machine
learning.

◮ We follow the second line of research: but we train our
classifiers on simple primitives that are available to us through
the sensory data of a mobile robot.

◮ Resembles the task of grounding of word meanings (Roy,
2002).
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MOOS: Mission Oriented Operating Suite

◮ A set of libraries and executables that run a mobile robot
(Newman, 2001).

◮ A modular system with a star-like topology.

MOOSDB

pAntler
starts processes

iAGV
publishes the
odometry info

pLogger
logs values
from MOOSDB

iRemote
manual
control

iVoice
speech
recognition
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Data was collected from two contexts

Context I: the robot is moving in an enclosed space and performs a
range of motions: forward and backward motion with various
velocities, turning left and right under acute and obtuse angles.

◮ Describers are asked to describe its motion: You’re going

forward slowly. Now you’re turning right.

◮ All descriptions are made from the robot’s point of view.

◮ The robot is controlled by an operator who attempts to go
through a range of motions for each describer but in no
particular order.

◮ Considerable errors: a delay after a description was made and
before it reached the MOOS database!
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Data was collected from two contexts
Context II: static scenes with real-size objects such as desks, chairs
and walls and the describers comment on the locations of objects
(including the robot): The chair is to the left of you. The table is

further away than the chair.
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Structure of datasets for machine learning

◮ Weka toolkit (Witten and Frank, 2000) is used.

◮ A supervised method: information must be preprocessed and
abstracted in a certain way (may effect the learning
procedure).

◮ Datasets must consist of independent instances which are
vectors of attribute values, the properties that we want to
include in learning.

◮ To learn the value of an attribute (also known as the target
concept) means to find a relationship between other attribute
values.
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From MOOS logs to Weka input files

MOOS log files look like this (simplified):

24.452 ODOMETRY ..., dh=0.635, speed=0.542, ...

24.578 ODOMETRY ..., dh=0.000, speed=0,121, ...

24.623 COMMENTARY_RELATIONS ..., Desk=[3x1]{-1.916,5.136,0}...

24.649 ODOMETRY ..., dh=0.001, speed=0.234, ...

25.034 VOICE_INPUT You’re turning left.

For Weka we need something like this:

0.001, 0.234, turning, left, none, none

Some numeric values must be calculated. All of them must be
normalised. The category membership of words must be
determined (simple unification grammar).
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And finally. . .

◮ Context I: 〈delta heading, speed, verb, direction, heading,
manner〉

◮ Context II: 〈lo x, lo y, refo x, refo y, relation〉
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Decision trees

◮ Select an attribute to create a node for in the tree and then
create branches for each of its possible values.

◮ Repeat the process (using a subset of instances that fall under
that branch) until all instances at a node have the same
classification.

◮ Prefers small trees: uses information gain as the measure to
choose which attribute to split on first.
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NaiveBayes

◮ A rule generator based on Bayes’ rule of conditional
probability.

◮ What is the probability of a description (the target class) given
some evidence (the state of the robot and the environment)?

◮ Pr(desc|E1...n) = Pr(E1|desc)...Pr(En|desc)Pr(desc)
Pr(E)

◮ Find the probabilities on the RH of the equation.

◮ All attributes are equally important and independent of one
another.
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Context I: datasets

◮ Subset I: 192 instances from ‘the best dataset’ with no
alignment.

◮ Subset II: 338 instances created with alignment.

◮ When learning a description, only numeric attributes were
included. For example: 〈delta heading, speed, verb〉.

◮ 10-fold cross-validation was used to test the accuracies of the
classifiers.
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Context I: results for nominal attributes

Subset I

Classifier Direction Heading Manner Verb

Decision trees 74.0% 74.0% 79.2% 75.5%
NaiveBayes 67.7% 75.5% 78.1% 64.1%

Subset II

Classifier Direction Heading Manner Verb

Decision trees 73.4% 73.1% 65.4% 65.4%
NaiveBayes 70.1% 67.8% 57.4% 62.1%
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Context I: which words were learnt?

Nominal attribute values for Subset I

Attribute Values

Direction backward, forward, none, spot, straight
Heading anticlockwise, clockwise, left, none, right
Manner fast, moderately, none, slowly
Verb creeping, going, moving, turning, stopped

Since each attribute has 4 or 5 values, the probability of randomly
guessing a word for each class is 25% or 20%.
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Context I: continuous numeric attributes

The accuracy of decision trees for Subset I

Bins Delta heading Speed

3 81.8% 80.2%
5 72.4% 69.8%
10 49.5% 64.0%
20 35.9% 52.6%
30 30.7% 52.1%
40 26.0% 49.5%
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Context II: prepositional relations

◮ 251 instances in total.

◮ 〈lo x, lo y, refo x, refo y, relation〉

◮ 10-fold cross-validation.

◮ Correctly classified instances: 74.9% (Decision trees) and
77.3% (NaiveBayes).
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pDescriber

◮ pDescriber is a commentator.

◮ If the robot is moving, it describes its actions: I’m going

forward fast.

◮ If the robot is stationary, it provides comments about position
of objects: The table is to the right of the chest.

◮ Uses nominal classifiers for both contexts and the unification
grammar to generate sentences.

◮ The system includes a speech synthesiser.
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pDialogue

◮ Chats with users: a pattern matching dialogue interface that
matches user’s input with a predefined pattern and returns the
associated reply.

◮ Performs motion commands: Go forward slowly. Go forward

right fast. It uses the classifiers for Delta heading and Speed,
turns them to Desired rudder and Desired thrust (commands
how to achieve that state).

◮ Answers questions about position of objects: Where is the

chair? It uses the nominal classifier for relations.

◮ In both (2) and (3) our simple unification grammar is used to
generate sentences or to parse the input.
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Conclusion and future work

◮ A complete cycle how descriptions are learnt from the
properties of the environment internalised by the robot and
subsequently used to refer to the environment.

◮ Minimise human input in supervised learning.

◮ Perform learning on higher (abstracted) levels of robot’s
environment (modelling of perspective, etc.).

◮ Evaluate and minimise errors in input data.

◮ How can linguistic and localisation (SLAM) system be
integrated to benefit from each other?
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