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Introduction

• Armadillo is:
– a tool that provides              

automatic annotation for the 
Semantic Web

– driven by crawling (Web or corpus)
– An extensible architecture for 

ontology population
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Implementation

• This abstract 
process is 
constructed as a 
workflow in BPEL
– Type parameters

• A, B, C, Doc, DocId

– Service parameters
• (dashed boxes)  
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Application Development

Development of a new application involves:
• Loading an OWL ontology
• Identifying an ‘oracle’ (infallible source) for 

instances of some concepts
• Decide order/direction to populate relations

– Concept with existing instances becomes A
– Related concept becomes B
– Services in workflow then ‘discovered’ 

according to resulting types…
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Conclusions

SWS-based architecture allows:
• Most coding to be avoided
• Reuse of a wide variety of services
• Use of service Discovery in development
• Distribution and concurrency
• Conceptual view on system
This architecture is currently being evaluated 

within the Dot.Kot project.


