
Developing a Service-Oriented
Architecture to Harvest

Information for the Semantic Web

Barry Norton, Sam Chapman &
Fabio Ciravegna

(acknowledging Christopher Brewster,
Jose Iria & Vita Lanfranchi)

Introduction

• Armadillo is:
– a tool that provides

automatic annotation for the
Semantic Web

– driven by crawling (Web or corpus)
– An extensible architecture for

ontology population

Evidential
reasoning

Crawling

Instance
Recognition

Combination
Storage

Contextual
(Backward)

Relational
(Forward)

Overview

• Crawling
explores
documents
associated
with some
existing
instance of a
concept A

Evidential
reasoning

Crawling

Instance
Recognition

Combination
Storage

Contextual
(Backward)

Relational
(Forward)

Overview

• Instance
recognition
locates
instances of a
concept B
with an
implicit
relation

Evidential
reasoning

Crawling

Instance
Recognition

Combination
Storage

Contextual
(Backward)

Relational
(Forward)

Overview

• Further
reasoning
finds
evidence for
the
classification
and relation

Evidential
reasoning

Crawling

Instance
Recognition

Combination
Storage

Contextual
(Backward)

Relational
(Forward)

Overview

• Evidence is
combined and
successful
new
instances
stored in a
repository

Implementation

• This abstract
process is
constructed as a
workflow in BPEL
– Type parameters

• A, B, C, Doc, DocId

– Service parameters
• (dashed boxes)

B-

Doc Loader

A

LowPriority
Enqueue

3Queue<DocId>

HighPriority
Enqueue

DocId

B-Recogniser

Doc

Reference
Finder

[DocId]

Correlation
Reasoner

[DocId]

Relational
Reasoner

B Reference
Oracle

A-B
Colocated
Reference

Oracle

[B]

B

(Evidence, [((B, _, A), Evidence)])

([Evidence], [((B, _, A), Evidence)], [(C, [((B, _, C), Evidence)])])

Combination

()

(Evidence, [(C, [((B, _, C), Evidence)])])

[C]

B-C
Relation

Repository

MedPriority
Enqueue

Trigger

Doc

[B]

Duplicate Removal
and Consolidation

Queue
Enqueue Trigger

[B]

[B] ()

()

() ()

[DocId]

[DocId]

(Evidence, [((B, _, A), Evidence)],
 [(C, [((B, _, C), Evidence)])])

Application Development

Development of a new application involves:
• Loading an OWL ontology
• Identifying an ‘oracle’ (infallible source) for

instances of some concepts
• Decide order/direction to populate relations

– Concept with existing instances becomes A
– Related concept becomes B
– Services in workflow then ‘discovered’

according to resulting types…

Example

University

Academic

Paper

1

*

*

*

employedBy

employs

authoredBy

authored

Person

Example

University

Academic

Paper

1

*

*

*

employs

authored

Person

A

B

C

Crawling

Enqueue
Med Prio

Doc
LoaderFinder

Reference

Enqueue
High Prio

Enqueue

[DocId]

3Queue<DocId>

[DocId]

DocId

Doc

Low Prio

Crawling

Enqueue
Med Prio

Doc
LoaderFinder

Reference

Enqueue
High Prio

Enqueue

[DocId]

3Queue<DocId>

[DocId]

DocId

Doc

Low Prio
Enqueue
Med Prio

Enqueue
High Prio

Enqueue

[URL]

3Queue<URL>

[URL]

URL

HTML

Low Prio

Caching Page
Finder
Link

Loader

e.g.

Instance Recognition

Enqueue
Med Prio

Enqueue

2Queue

Low Prio

Doc

[B]

B-Recogniser

[B]

[B]

Duplicate
Removal /

Consolidation

Instance Recognition

Enqueue
Med Prio

Enqueue

2Queue

Low Prio

Doc

[B]

B-Recogniser

[B]

[B]

Duplicate
Removal /

Consolidation

e.g.

HTML
Regex

Name
Patterns

PersonRecogniser

LearnApply

Enqueue
Med Prio

Enqueue

2Queue<Person>

Low Prio

HTML

[Person]

Amilcare

[Person]

[Person]

Cross-match &
3Store

Look-up

Contextual Reasoning

B

A-B Colocated
Reference
Oracle

B Reference
Oracle
[DocId]

[DocId]
Correlation
Reasoner

[(B, _, A), Evidence]

A

Contextual Reasoning

B

A-B Colocated
Reference
Oracle

B Reference
Oracle
[DocId]

[DocId]
Correlation
Reasoner

[(B, _, A), Evidence]

A

e.g.

Person

Search
[URL]

[URL]
Numerical
Correlation

GoogleGoogle
Search

University

[(Academic, employedBy, University), Probability]

Relational Reasoning

B-C Relation
Oracle
[C]

Relational
Reasoner

(Evidence,
[C, [(B, _, C), Evidence]])

B

Relational Reasoning

B-C Relation
Oracle
[C]

Relational
Reasoner

(Evidence,
[C, [(B, _, C), Evidence]])

B

e.g.

[Paper]
Mid-Range

Citeseer
Wrapper

Filter

Person

[Paper, [(Academic, _, Paper),
Probability]])

[Forename]
Gazetteer

Person

[Forename, [(Person, _, Forename),
Probability]])

Forename

String
Comparison

(Probability,(Probability,

Conclusions

SWS-based architecture allows:
• Most coding to be avoided
• Reuse of a wide variety of services
• Use of service Discovery in development
• Distribution and concurrency
• Conceptual view on system
This architecture is currently being evaluated

within the Dot.Kot project.

