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e What are Web APIs?

- New Web Services based on a simple stack of
technologies, = “"URL+HTTP+XML/JSON”

- Known as RESTful service when conforming the
REST principles

e Why Web APIs?

— Light technology stack VS. “classical” Web
services (WSDL, SOAP, WS-*)

— Enable easy access and aggregation of
collection of resources

— Widely used and reused
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e Dedicated registries, e.g. ProgrammableWeb

— Contain out of date or incorrect information,
e.g. invalid pages or incorrect links to APIs
documentation pages

— Only a limited number of Web APIs listed, left
out a large number of third party Web APIs

e General search engine, e.g. Google

— Not optimized for Web API discovery

— Mix up with pages that are not (so) relevant,
e.g. blogs and advertisement about Web APIs.
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Our Goal ...

e Goal: To build a customized search engine for
detecting third party Web APIs on the Web
scale

— Assume every Web API provides public
documentation page(s)

— These pages provide the most relevant
information for developers

— Approached as a binary classification problem,
i.e. distinguishing API documentation VS.
normal pages
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e Issues

- No simple way to effectively and uniquely
identify Web APIs

— described in plain and unstructured HTML highly
heterogeneous in format and contents, i.e. NO
Gold standard

e People hardly follow even there is !!!

— More than 99% of pages on the Web are NOT
relevant to Web API

e Need a high precision classifier yet maintaining
good accuracy




Our Approach

The Feature LDA model




Latent Dirichlet
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e LDA: the simplest form of topic models one
- A fully unsupervised Bayesian model gdna

— Assumes that documents exhibit multiple tg cell
known as “theme” or "gist” ) sequence

~ Each topic is a distribution over words whicl gle”et_igs
tight semantic relation with one another happ' J
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Dirichlet Topic assignment . Dirichlet
parameter \ parameter
i v ™ [
(O~ @- \
T
T \ 1 N‘iD |
\ | J
Per-document Topic Observed _ T_opic_
proportions word distributions
e Intuition:

- Each document exhibit multiple topics
— Each topic is a distribution over words
— Each word is drawn from one of those topics
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Generate a document with a bulk \ﬁﬁl _
of words ...
Per-doc topic
proportion
Per-word topic
assignment

Topics:

gene 0.04 data 0.04
| dna 0.02 number 0.04|

cell 0.01 computer 0.04
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e Feature LDA model: a generic probabilistic
framework for text classification.

— A supervised four-layer hierarchical Bayesian
model

- Accommodate supervisions from both labelled
instance and labelled features for training

— Able to extract meaningful class specific topics

e |Labelled features

— In baseball vs. hockey text classification
e pitcher - baseball, puck > hockey

- learned automatically from training data using
any feature selection method, e.g. Info Gain
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For each document d

— Draw my~Dir(y x g)

— For each class label k, draw
04, ~Dir(oy)

For each word w in d

— Draw a class label |~ Mult(zn,)

— Draw a topic z;~ Mult(® )

— Draw a word w;~ Mult(®;; ;)
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e Collapse Gibbs sampling for model posterior
estimation

-t —t -
t Nk,j,wa + Br,jt Nd, g + Nd,;i + Tk

P(z;=j,c; =klw,z "¢ ! e, B,7)

Nt 4 YiBris Nit+ ¥ 005 Nit+pw
e Approximating model parameters

Ohis = Ny ji + Br.ji Oy - Nipj + o, Nar + vk
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Nkj+ 22 Brji Nok+ 0k % Ng+3.m
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e The API dataset: 1,547 Web pages crawled from the
API Home URLs of ProgrammableWeb (manually
labelled, training/testing split: 80%-20%)

— 622 pages are API documentations
- 925 pages are normal Web pages
e Preprocessing

— Extract content from HTMLs by discarding tags and
java scripts that are not relevant to classification

— remove wildcards, non-alphanumeric characters and
stop-words, followed by Porter stemming.

e Setup

— Class label k = 2

- Topic number T=1, 2, 3,4,5,6,7,8,9, 10, 15, 20
= - 29,000 labelled features (Info Gain)
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e We report feaLDA classification results on the API
dataset with different model settings:

— Training with labelled instances

— Training with both labelled instances and labelled
features

— fealLDA performance feature selection on labeled
features

— fealDA vs. baselines (NB, SVM, MaxEnt) and other
supervised topic models (labelLDA, pLDA)

— Topic extraction
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Aaccuracy

0.82
0.815
0.81
0.805
0.8
0.795
0.79
0.785
0.78
0.775
0.77

Labelled instances

. + labelled features

Naive Bayes ===-maxEnt — - =SVM feaLDA-docLabOnly fealDA
. feaLDA = 81.8%
T=3
/ MaxEnt = 79.3%
tl t2 13 t4 t5

Topic Number
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Feature Selection

Topicl Topic2 Topic3 Topic4d - - -Topich
0.83 -
feaLDA = 82.7%
0.825 - 3.4% > MaxEnt
0.82
> 0.815
€ os1
o
< 0.805
0.8
0.795 -
U.?g 1 I T T T T T
0.51 0.52 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
T value

__ fealLDA classification accuracy vs. different feature class

probability threshold T.
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Table 2: Comparing fealLDA with existing supervised approaches.

aive Bayes SVM maxEnt| lai]?gid pLDA |feaLDA
Recall 79.2 70.8 69.3 59.8 65.9 | 68.8
Precision 71.0 75.4 774 86.1 &82.1 | 85.2
F1 74.8 73.1 73 70.2 73.1 76
Accuracy 786 79 793 79.8 80.5 | 82.7

o fealLDA vs. the state-of-the-art models
— outperforms three strong supervised baselines
- better than labeledLDA and pLDA for more than 3% in
accuracy

— gives very high precision: essential for reducing false
positives when mining from the Web
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Table 3: Topics extracted by feaLDA with K = 2,T = 3.

T1: nbsp quot gt It http api amp type code format valu json statu paramet element
T2: 1t gt id type http px com true url xml integ string fond color titl date
T3: api http user get request url return string id data servic kel list page paramet

T1: px color font background pad margin left imag size border width height text div thread
T?2: servic api site develop data web user applic http get amp email contact support custom
T3: obj park flight min type citi air fizbber airlin stream school die content airport garag

e Topics with true API label

— Terms are fairly technical, e.q. json, statu, paramet,
element, valu, request and string, etc.

e Topics with false API label

— Terms are less technical and more diverse, e.g. contact,
support, custom, flight, school

Negative| Positive
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e Discovering Web APIs is becoming increasingly
important and existing support is not optimal

e Treat Web API discovery as a classification
problem

e Presented a supervised topic model called feaLDA
— offers a generic framework for text classification

— Capable to encode supervision from both labelled
instance and labelled features

— Offers very high precision which is crucial for
reducing false positive when mining from the Web

— Able to extract class label specific topics
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Questions?

Email: chenghua.lin@open.ac.uk
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