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Introduction 

• What are Web APIs? 

– New Web Services based on a simple stack of 
technologies, ≈ “URL+HTTP+XML/JSON” 

– Known as RESTful service when conforming the 
REST principles 

• Why Web APIs? 

– Light technology stack VS. “classical” Web 

services (WSDL, SOAP, WS-*) 

– Enable easy access and aggregation of 
collection of resources 

– Widely used and reused 



Finding a Web API 

• Dedicated registries, e.g. ProgrammableWeb 

– Contain out of date or incorrect information, 
e.g. invalid pages or incorrect links to APIs 
documentation pages 

– Only a limited number of Web APIs listed, left 
out a large number of third party Web APIs 

• General search engine, e.g. Google 

– Not optimized for Web API discovery 

– Mix up with pages that are not (so) relevant, 
e.g. blogs and advertisement about Web APIs.  



Motivating Example 

• Suppose we use Google to search “sentiment 
analysis” APIs … 



Our Goal … 

• Goal: To build a customized search engine for 
detecting third party Web APIs on the Web 
scale  

– Assume every Web API provides public 
documentation page(s) 

– These pages provide the most relevant 
information for developers 

– Approached as a binary classification problem, 
i.e. distinguishing API documentation VS. 
normal pages 

 

 



Easy Task? 

• Issues 

– No simple way to effectively and uniquely 
identify Web APIs 

– described in plain and unstructured HTML highly 
heterogeneous in format and contents, i.e. NO 
Gold standard 

• People hardly follow even there is !!! 

– More than 99% of pages on the Web are NOT 
relevant to Web API 

• Need a high precision classifier yet maintaining 
good accuracy  



Our Approach 

 

 

 

The Feature LDA model  



Latent Dirichlet 
Allocation (LDA) 

• LDA: the simplest form of topic models 

– A fully unsupervised Bayesian model  

– Assumes that documents exhibit multiple topics (also 
known as “theme” or “gist” ) 

– Each topic is a distribution over words which have 
tight semantic relation with one another  
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• Intuition: 

– Each document exhibit multiple topics 

– Each topic is a distribution over words 

– Each word is drawn from one of those topics 

 

 



A Colorful Example  

Generating a document with a LDA model 

– What we know: the model parameters and 
distributions, i.e. (α, β, Θ, Φ) 

– What we don’t know: the WORDS of each 
document, which needs to be generated … 
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of words …  

 

 

 

 



In a real-world 
setting 

• Inverse the entire process, to estimate the 
LDA model parameters given observation, i.e. 
a collection of documents  

– What we know: the WORDS of each document, 
which we can observe 

– What we don’t know: the model parameters and 
distributions, i.e. (α, β, Θ, Φ) 
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Feature LDA  

• Feature LDA model: a generic probabilistic 
framework for text classification. 

– A supervised four-layer hierarchical Bayesian 
model  

– Accommodate supervisions from both labelled 
instance and labelled features for training 

– Able to extract meaningful class specific topics 

• Labelled features 

– In baseball vs. hockey text classification 

• pitcher  baseball, puck  hockey  

– learned automatically from training data using 
any feature selection method, e.g. Info Gain 
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Generative Process 

• For each document d 

– Draw πd ~Dir(γ × εd) 

– For each class label k, draw 
θd,k ~Dir(αk) 

• For each word w in d 

– Draw a class label li ~ Mult(πd) 

– Draw a topic zi ~ Mult(Θd,li) 

– Draw a word wi ~ Mult(Φli,zi) 

 

 

 



Inference 

 

• Collapse Gibbs sampling for model posterior 
estimation 

 

 

• Approximating model parameters 

 

 

 



Data and Setup 

• The API dataset: 1,547 Web pages crawled  from the 
API Home URLs of ProgrammableWeb (manually 
labelled, training/testing split: 80%-20%) 

– 622 pages are API documentations 

– 925 pages are normal Web pages 

• Preprocessing 

– Extract content from HTMLs by discarding tags and 
java scripts that are not relevant to classification 

– remove wildcards, non-alphanumeric characters and 

stop-words, followed by Porter stemming.  

• Setup 

– Class label k = 2 

– Topic number T=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 

– 29,000 labelled features (Info Gain) 

 



Experimental 
Results 

• We report feaLDA classification results on the API 
dataset with different model settings: 

– Training with labelled instances 

– Training with both labelled instances and labelled 
features 

– feaLDA performance feature selection on labeled 
features 

– feaLDA vs. baselines (NB, SVM, MaxEnt) and other 
supervised topic models (labelLDA, pLDA) 

– Topic extraction 

 

 

 

 

 



Training with 
labelled Instances 

MaxEnt = 79.3% 

feaLDA = 80.5% 
T = 2 



Labelled instances 
+ labelled features 

MaxEnt = 79.3% 

feaLDA = 81.8% 
T = 3 



Feature Selection 

feaLDA classification accuracy vs. different feature class 
probability threshold τ.  

 

feaLDA = 82.7% 
3.4% > MaxEnt 



Overall comparison 

• feaLDA vs. the state-of-the-art models 

– outperforms three strong supervised baselines 

– better than labeledLDA and pLDA for more than 3% in 
accuracy  

– gives very high precision: essential for reducing false 
positives when mining from the Web 

 

 

 

 

 

 

 

 



Topic Extraction 

• Topics with true API label 

– Terms are fairly technical, e.g. json, statu, paramet, 
element, valu, request and string, etc.   

• Topics with false API label 

– Terms are less technical and more diverse, e.g. contact, 
support, custom, flight, school  

 

 



Conclusions 

• Discovering Web APIs is becoming increasingly 
important and existing support is not optimal 

• Treat Web API discovery as a classification 
problem 

• Presented a supervised topic model called feaLDA  

– offers a generic framework for text classification  

– Capable to encode supervision from both labelled 
instance and labelled features 

– Offers very high precision which is crucial for 
reducing false positive when mining from the Web  

– Able to extract class label specific topics  
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Questions? 
 

Email: chenghua.lin@open.ac.uk 


